
Pamela Zave

AT&T Laboratories—Research

Bedminster, New Jersey, USA

HOW TO MAKE CHORD CORRECT

1

8

14

21

32

42

51

THE PROTOCOL IS
INTERESTING

no central
administration
(almost)

communication
in the network
is fast

protocol
operations are
simple and fast:

no timing
constraints
(almost)

no multi-node
atomic
operations

m = 6

THE CHORD PROTOCOL MAINTAINS A PEER-TO-PEER
 NETWORK
identifier of a node (assumed
unique) is an m-bit hash
of its IP address

nodes are arranged in
a ring, each node
having a successor
pointer to the next
node (in integer order
with wraparound at 0)

the protocol preserves
the ring structure as
nodes join, leave silently,
or fail

redundant pointers
support fault-tolerance
(extra successors,
predecessors)

successor

successor2

predecessor

WHY IS CHORD IMPORTANT?

the 2001 SIGCOMM paper introducing Chord
is one of the most-referenced

papers in computer science, . . .

. . . and won SIGCOMM’s 2011 Test of Time Award

APPLICATIONS

“Three features that
distinguish Chord from
many other peer-to-peer
lookup protocols are . . .

. . . its simplicity,

. . . provable correctness,

. . . and provable
 performance.”

RESEARCH ON PROPERTIES AND
EXTENSIONS

allows millions of ad hoc peers to
cooperate

often used to build distributed
key-value stores (where the key
space is the same as the Chord
identifier space)

the best-known application is
BitTorrent

protection against malicious peers

key consistency (all nodes agree
on which node owns which key)

data replication and consistency of
replicated data

enhanced queries

used as a building block in fault-
tolerant applications

OPERATIONS OF THE PROTOCOL

7
10

16

10
JOINS

10
STABILIZES

7
10

16

16
NOTIFIED

10
NOTIFIED

7

10

16

7
10

16

7
STABILIZES

7

10

16

an operation changes
the state of one member

most operations are scheduled, asynchronously
and autonomously, by their own nodes

now 10 is fully
integrated into
the ring

MORE OPERATIONS OF THE PROTOCOL
9

16

22 22
35

9

16

35

22
FAILS

OR LEAVES

9

16

35

16
UPDATES

22 has
no pointers,

does not respond
to queries

9

16

35

35
FLUSHES

9

16

35

9
RECONCILES

now the hole
left by 22 is
repaired

WHAT THE PROTOCOL CANNOT DO

If a Chord network is not Valid, then
some member nodes are unreachable
from some other nodes, . . .

. . . and this cannot be repaired.

IN A VALID NETWORK . . .

7

19

16

13

263

29
43

55

there is a ring of
best successors

there is no more
than one ring

on the unique ring, the
nodes are in identifier order

from each appendage
member, the ring is reachable
through best successors

6

WHAT THE PROTOCOL SHOULD DO

appendage

best
successor

Theorem:

Well-Known Fact:Theorem:

A Chord network is always Valid.

In any execution state, if there are no
subsequent join or fail events,
eventually all pointers will become
globally correct and remain globally
correct.

“eventual consistency”

ring

ORIGINAL CHORD IS NOT CORRECT—HOW BAD IS IT?

OrderedMerges . . .
. . . means that appendages merge
in the correct places, as they
do here

12

6

10

16

6

10

1216

VIOLATIONS OF OrderedMerges

cause some lookups to fail

invalidate some
assumptions used in
performance analysis

. . . of the seven properties claimed to be invariants, not one is actually an invariant.

including the four clauses of Valid

6
STABILIZES,

12
NOTIFIED

OrderedMerges
is easily
violated

are not incorrect

can be demonstrated in
Chord networks with
3 nodes

how could they go unknown
for ten years?

this is why
formal methods
are so important

Because of sloppy, informal specification and proof . . .

OUTLINE

fixing the protocol

the elusive inductive invariant

proof of correctness

HOW TO MAKE CHORD CORRECT

THE ROLE OF FORMAL METHODS

COMMUNITY REACTIONS

16 16 16

Node 3 had no successor2 yet
(it is not required to have all
successors filled in).

When it stabilized, it replaced a pointer
to a live node (40) with a pointer to a
dead node (16).

Now Node 3 has no pointers to live nodes,
and there is no ring.

BUGS IN THE OPERATIONS

A REALLY SIMPLE BUG:

16
FAILS

3
STABILIZES3

40

3

40

3

40

THE BUG IN INITIALIZATION

IN ORIGINAL CHORD, A NETWORK IS
INITIALIZED WITH ONE MEMBER

48

62 37

length of successor list
= R = 2

48

62

37

first and second
successors must
duplicate each other

48
STABILIZES,

62
RECTIFIES

62

37

48
FAILS

one failure
is allowed
by operating
assumptions . . .

. . . but the member
nodes, having only
one distinct entry in their
successor lists, cannot
recover from this failure

THE OPERATING ASSUMPTION

7

19

29

29
55

55

41

41

best successor
(first live

successor)
dead

extended successor list
of 29 (with R = 2):

member
itself

Definition: A Chord network has the
property FullSuccessorLists if the
extended successor list of each member
has R+1 distinct entries.

Operating Assumption (a kind of fairness):

If a Chord network has the property
FullSuccessorLists, then every
member has a best successor.

ultimately, this relates the failure rate
to the rate of stabilization

FIXING ORIGINAL CHORD

join + reconcile = JOIN

stabilize + reconcile + update = STABILIZE

notified + flush = RECTIFY

this populates successor lists
more eagerly,

keeping them fuller

FIX INITIALIZATION

alter the initialization to
satisfy FullSuccessorLists
with all successors live

FIXING THE OPERATIONS

merge small, independently scheduled
operations into bigger ones

check that a new pointer is live before
replacing another pointer with it

write complete, precise pseudocode

be explicit about inter-node
communication (queries)

this requires a minimum
of R + 1 members

WHAT IS THE INDUCTIVE INVARIANT?

there is a ring of best successors

there is no more than one ring

on the unique ring, the members
are in identifier order

from each appendage member, the
ring is reachable through best
successors

NECESSARY BUT NOT SUFFICIENT:

NOT INVARIANT (EVEN IN
CONJUNCTION WITH THE ABOVE):

FullSuccessorLists

OrderedSuccessorLists

and many, many other
well-motivated candidates!

x

y

z

Between [x, y, z]

! Between [z, y, x]

For all contiguous sublists [x, y, z]
in an extended successor list,
Between [x, y, z].

clockwise
ordering

in the
identifier

space

w

x

y

u

z

w
x

y

u

z

ring
x

fails

WHY IS IT SO DIFFICULT?

there is a ring of best successors

there is no more than one ring

on the unique ring, the members
are in identifier order

from each appendage member, the
ring is reachable through best
successors

THE NECESSARY PROPERTIES ARE STATED IN TERMS OF THE RING . . .

about the ring of
best successors

about the appendages

. . . BUT “RING VERSUS APPENDAGE” IS CONTEXT-DEPENDENT AND FLUID:

A TRIAL INDUCTIVE INVARIANT

Valid and

NoDuplicates and

OrderedSuccessorLists

[3, 4, 4]

[3, 7, 5]

EXCLUDES this extended successor list (R = 2):

same first and second successors

list is not in numerical order

45

3

2052

31

45

2052

31

45

2052

31

this network satisfies
the property

3
FAILS

now the identifiers
in the ring are out of
order, so the trial
invariant is false

45
belongs

here

52
STABILIZES

THE INDUCTIVE INVARIANT

45 5547

ANOTHER OPERATING
ASSUMPTION:

A Chord network has a stable
base of R+1 nodes that are
always members.

Definition by example:
If 48 is a member, this extended
successor list skips it.

THE INDUCTIVE INVARIANT:

 OneOrderedRing

and ConnectedAppendages

and BaseNotSkipped

no extended successor list skips
a member of the stable base

WHY THE INDUCTIVE INVARIANT IS SUFFICIENT

ANOTHER OPERATING
ASSUMPTION:

A Chord network has a stable
base of R+1 nodes that are
always members.

THE INDUCTIVE INVARIANT:

 OneOrderedRing

and ConnectedAppendages

and BaseNotSkipped

this applies to ring
members and appendages
alike

x

y

z

One case of a proof that this invariant
implies OrderedSuccessorLists:

If [x,y,z] appears in a
successor list and the
values are as pictured,
OSL is false.

But there can be no
base member between
x and y . . .

. . . and no base member between y and z . . .

. . . so y is the only possible base member,
which is a contradiction.

ordering
in the

identifier
space

SIGNIFICANCE OF THE BASE

A stable base would have 3-6
members,

while a Chord network can have
millions of nodes, most of which are
nowhere near a base node,

so how can their operations be
affected by the stable base?

CONCLUSIONS

The purpose of the stable base is to
prevent anomalies in small networks.

Once a Chord network has grown to
a sufficient size, a stable base is not
needed!

. . .

. . .

duplicate entries in successor lists,
successor lists that “wrap around”
and become disordered, etc.

this does not mean that a large
network cannot have flaws!

the large network must have
grown from a small network

satisfying the invariant

WHAT DOES THE STABLE BASE DO,
IN PRACTICE?

this matters because each member
must be a high-availability node
(cluster) with a fixed IP address

PROOF OUTLINE
In any reachable state, if there are no subsequent joins or failures, then
eventually the network will become ideal and remain ideal.

PROOF:

1 Show that the inductive invariant is
true of all reachable states.

2

3

4

5

An operation that takes 0 or 1 query can
be considered atomic. For operations
that take 2 queries, show that the first half
and the second half can safely be
separated by concurrent operations.

An effective repair operation is one
that changes the network state.
Define a natural-valued measure of
the error in the network, and show
that every effective repair operation
decreases the error.

Show that whenever the network is not
Ideal, some effective repair operation is
enabled.

Show that whenever the network is Ideal,
no effective repair operation is enabled.

because the error is finite, after
a finite number of repairs, the
network will have no error and
be Ideal

AUTOMATED
once it is ideal it stays ideal,
because repair operations will
not change it

THEOREM:

AUTOMATED (exhaustive search
over a finite domain)

AUTOMATED

MANUAL

AUTOMATED

SMALL SCOPE HYPOTHESIS

NETWORK SIZE

We can only do exhaustive search for
networks up to some node size N.

The “small scope hypothesis” makes
explicit a folk theorem that most real
bugs have small counterexamples.

Well-supported by experience, it is
the philosophical basis of lightweight
modeling and analysis.

RING STRUCTURES

The hypothesis is especially credible
in this study, because ring structures
are so symmetrical.

For example, to verify assertions
relating pairs of nodes, it is only
necessary to check rings of up to
size 4.

not directly relevant to Chord

EXPLORATION OF CHORD MODELS
CONFIRMS THIS

Original version of Chord was explored
with R = 2.

new counterexamples were found at
N = 2, 3, 4 (many of each),

and 5 (just one)

Nearly-correct versions of Chord were
explored with R = 2.

new counterexamples were found at
N = 4, 5 (many of each),

and 6 (just one)

I feel very safe having analyzed up to
R = 3 and N = 9.

WHAT SCOPE IS BIG ENOUGH?

Correct version of Chord was explored
with R = 3.

no new counterexamples

OUTLINE

fixing the protocol

the elusive inductive invariant

proof of correctness

HOW TO MAKE CHORD CORRECT

THE ROLE OF FORMAL METHODS

COMMUNITY REACTIONS

LIGHTWEIGHT MODELING

DEFINITION

constructing a small, abstract
logical model of the key concepts
of a system

analyzing the properties of the
model with a tool that performs
exhaustive enumeration over a
bounded domain

WHY IS IT "LIGHTWEIGHT"?

because the model is very abstract
in comparison to a real
implementation, it is small and
can be constructed quickly

because the analysis tool is "push-
button", it yields results with
relatively little effort

in contrast,
theorem proving is not “push-button”

MY FAVORITE TOOLS

ALLOY

SPIN

Alloy language combines relational
algebra, first-order predicate
calculus, and transitive closure

Alloy Analyzer compiles a bounded
model into Boolean constraints,
uses SAT solvers to decide whether
the constraints are satisfiable

Promela is a simple programming
language with concurrent
processes, messages, bounded
message queues, and fixed-size
arrays

Spin is a model-checker: the
program specifies a large finite-
state machine that the checker
explores exhaustively

WHAT IS EASY WHAT IS VERY HARD

It is easy to model Chord in either
Alloy or Promela.

It is easy to . . .

find bugs

check assertions

get counterexamples to
assertions

. . . in networks with up to 4 nodes.

with R = 2,
this covers a
lot of ground

To prove that Chord is correct, we need
an inductive invariant (Valid is not
strong enough).

We don’t know if there is an inductive
invariant, or if there is one, what it is.

Without an inductive invariant, the
value of analysis is limited.

There are many trial invariants, some
straightforward and some baroque,
and none of them seem to work.

initial state

trace

all the states explored are true,
reachable states

traces can be long, even infinite

HOWEVER, only networks with 4-5
nodes can be analyzed completely,
and this is not enough

SPIN ALLOY
here are the states that satisfy a
trial inductive invariant P:

Alloy
computes
the results
of one
operation

this state does
not satisfy P

maybe the
new state is
fine—

if so, make P
weaker to
accept it and
try again

this state does
not satisfy P

maybe the old
state could never

be reached in a
real network—

if so, make P stronger
to reject the old

state and try again

this process might go on for a
long time and NEVER CONVERGE

“REAL” VERIFICATION VERSUS BOUNDED ANALYSIS

“Why don’t you do a real proof (for arbitrary R and N)?”

ANSWER # 1 ANSWER # 2

I don’t think engineers will do
“real” proofs with theorem provers.

I think that engineers can and
should do lightweight modeling
and analysis, and I am trying to
persuade them of its value.

I don’t know how (but I’m trying).

A real proof would be very
illuminating!

THE REACTION:
NETWORKING

THE REACTION:
DISTRIBUTED SYSTEMS

. . . most of these problems were easy
 to find with a small model and the
 Alloy Analyzer,

. . . so there is an important lesson
 about lightweight formal modeling
 as a design tool,

. . . but the networking community
 rejects papers on fixing Chord

Amazon Web Services credits this
work with overcoming their bias
against formal methods, and
causing them to start using formal
methods to find bugs

AWS is now using TLA, with great
success

Chord is interesting to
two subfields of computer science

REFERENCES

“Using lightweight modeling to understand Chord”

ACM SIGCOMM Computer Communications Review, April 2012

“A practical comparison of Alloy and Spin”

Formal Aspects of Computing, 2014

www.research.att.com/~pamela > Chord

“How to make Chord correct”

arXiv, submitted for publication

ALL PAPERS AND MODELS

“How Amazon Web Services uses formal methods”
Chris Newcombe et al.
Communications of the ACM, April 2015

CHORD WORK

AMAZON

COMMUNITY REACTIONS

Amazon credits this work with giving them the required evidence that formal
methods work on real-world systems; Amazon now uses formal methods routinely.

SIGCOMM COMMUNITY IS CREATIVE IN REJECTING FORMAL METHODS

“these flaws are obvious and
implementers fix them”

“these flaws are improbable and
do not occur in real executions”

note that Chord could use more
capabilities and stronger properties,
so people build on the basic protocol

note that people do not really
understand how Chord works

(incorrect invariants and
performance analyses)

this is patently false

even if it were true, why should
each implementer have to
rediscover them?

dynamically checking the invariant
is a good security principle, but
cannot be done if the invariant is
not known

how can anyone know that?

computing execution probabilities
would require implementation-
specific information such a timing

there are Chord failures (hearsay),
and no one knows the cause of all
of them

extensions should not be verified
on an unsound foundation

the modeling, analysis, invariant,
and proof all contribute to insight

DISTRIBUTED-COMPUTING COMMUNITY IS EMBRACING FORMAL METHODS

